-
成功进行数据转移的策略
所属栏目:[大数据] 日期:2022-06-09 热度:125
数据迁移是一个复杂且通常成本高昂的过程。企业将需要正确的方法来准确无误地迁移数据,其中包括深思熟虑的策略和适当的工具。 为什么需要数据迁移? 企业选择升级其存储系统并随之迁移数据有几个原因,最终帮助他们获得竞争优势。数据库迁移可帮助企业克服存[详细]
-
实施合理的数据收集战略的重要性
所属栏目:[大数据] 日期:2022-06-09 热度:95
数据已经成为企业最宝贵的资产之一,而一些企业仍然否认它的重要性,但他们对接受它的犹豫正在消退。一项民意调查发现,36%的企业认为大数据对他们的成功至关重要。 然而,许多企业仍在努力制定持久的数据战略。最主要的一个问题是他们没有可靠的数据收集方[详细]
-
怎样避免淹没在云原生可观测性数据中
所属栏目:[大数据] 日期:2022-06-09 热度:104
传统的应用程序性能监视(APM)在新的云原生堆栈中并不总是能发挥作用,两者在规模和数据量方面存在根本差异。此外,当一切都在容器中运行时,必须围绕数据的临时性设计和优化监视。 了解云原生性能可以更好地为站点可靠性工程师(SRE)和平台工程师提供实时洞察[详细]
-
使用取代数据的五个隐性成本
所属栏目:[大数据] 日期:2022-06-09 热度:63
如今,替代数据源已嵌入到各个行业的企业业务流程中。根据Lowenstein Sandler 律师事务所2022 年的一项调查,92% 的投资机构(从对冲基金、私募股权到风险投资)都在以中等或很大的程度使用替代数据来为决策提供依据。受访者还预计,他们在 2022 年对替代数据[详细]
-
2022年应关注的七大数据管理走势
所属栏目:[大数据] 日期:2022-06-09 热度:177
调研机构IDC公司分析师表示,数据分析市场正在蓬勃发展,目前全球每年的支出已经超过2000亿美元。 同样,全球数据分析就业市场规模也呈现上升趋势。根据美国劳工统计局预测,到2030年,数据科学职位将增长30%以上。此外,根据Gartner公司的估计,几乎所有企[详细]
-
数据科学中数据收集的终极攻略
所属栏目:[大数据] 日期:2022-06-09 热度:159
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
8个顶级预测分析工具对比
所属栏目:[大数据] 日期:2022-06-09 热度:129
希望知道未来会带来什么吗?预测分析工具将会提供答案,这些答案是对的吗?有时是对的。但是,如果预测可以帮助企业更好地规划、更明智地支出,并为客户提供更具预见性的服务,那么这就足够了。 什么是预测分析工具? 预测分析工具融合了人工智能和业务报告。这[详细]
-
大数据技术的成功案例及趋向
所属栏目:[大数据] 日期:2022-06-09 热度:58
通过大数据技术和工具进行数据管理已经成为企业乃至国家层面的一个热门话题。如今,主要是大型企业在使用大数据技术(约占市场的60%)。然而,使用这种技术的中小企业数量每年都在增长。特别是在人工智能技术发展的今天,我们能够更加充分利用数据的价值。 到2[详细]
-
为什么不可忽视建筑物中的数据分析?
所属栏目:[大数据] 日期:2022-06-09 热度:139
想象一栋建筑,其中创新的管理系统不断提供有关内部情况的简单而有意义的信息。这些数据可用于提高效率、开发更智能的设备维护协议、创建更健康的建筑环境,并最终让使用者更快乐。 现在,考虑一个没有用于监控其系统的分析的建筑物。设备出现故障,存在空气[详细]
-
通过AI系统分级协助企业控制成本
所属栏目:[大数据] 日期:2022-06-08 热度:195
就像国际汽车工程师学会(SAE)对自动驾驶汽车分级一样,为了预测人工智能系统的成本,给它们分个级别想必也是不错的选择。采用分级系统可以帮助组织计划和准备AI系统,且随着时间的推移,AI系统的复杂性也会不断增加。 设计和构建人工智能系统不是件容易事。[详细]
-
智能虚拟助理如何助力你在2022年成倍提高工作效率
所属栏目:[大数据] 日期:2022-06-08 热度:85
智能虚拟助理 (IVA, Intelligent Virtual Assistants) 也称为智能个人助理 (IPA, Intelligent Personal Assistants) ,是由人工智能驱动的代理,能从客户元数据、先前对话、知识库、地理位置、以及其他模块化数据库和插件等环境中提取信息,并生成个性化响应[详细]
-
2022年优质预测分析工具和软件
所属栏目:[大数据] 日期:2022-06-08 热度:122
数据管理一直是企业面临的挑战。随着新的数据源不断涌入,使用合适的工具比以往任何时候都更为关键。预测分析工具和软件是完成这项任务的最佳解决方案。数据专家和商业管理者必须能够组织和清理数据,以启动这一进程。随后是对数据进行分析,并与同事分享结[详细]
-
Twins重新思量高效的视觉注意力模型设计
所属栏目:[大数据] 日期:2022-06-08 热度:68
Twins [1] 是美团和阿德莱德大学合作提出的视觉注意力模型,相关论文已被 NeurIPS 2021 会议接收,代码也已在GitHub上进行开源。NeurIPS(Conference on Neural Information Processing Systems)是机器学习和计算神经科学相关的学术会议,也是人工智能方向[详细]
-
不要想当然认为人工智能不会替代你的工作!
所属栏目:[大数据] 日期:2022-06-08 热度:165
我们已经看到,一些平淡无奇或单调乏味的任务已经被机器人或自动化所取代,那么怎样才能阻止它们让我们所有人都失业呢? 希望总是存在的:有很多工作还需完全依赖于人的素质,比如创造力或同情心。这些是计算机程序无法复制的东西难道可以复制?接下来,让我们[详细]
-
AI可以跨过GitHub危机吗?
所属栏目:[大数据] 日期:2022-06-08 热度:148
机器学习如今正在面临一些危机,将会阻碍该领域的快速发展。这些危机源于一个更广泛的困境,即科学研究的可重复性。根据《自然》杂志对 1,500 名科学家进行的一项调查,70% 的研究人员曾尝试复制其他科学家的实验但未能获得成功,50% 以上的研究人员未能复制[详细]
-
2022年人工智能趋向AI将如何影响你?
所属栏目:[大数据] 日期:2022-06-08 热度:101
人工智能(AI)在2022年及以后将在我们的生活中扮演哪些更重要的角色?以下或许是人工智能大有可为的几个方面。 元宇宙和AI相碰撞 元宇宙结合了虚拟现实、增强现实、在线世界、定制体验和游戏。这使得人们可以完全在网上沟通交流、成交业务和塑造个性,这方[详细]
-
无代码可重用的人工智能将怎样跨越人工智能的鸿沟
所属栏目:[大数据] 日期:2022-06-08 热度:122
重复使用预先构建的人工智能解决方案和组件以及无需编码即可对其进行自定义,最终将允许企业创建人工智能解决方案,而无需雇佣人工智能专业人士或采用成本昂贵的 IT 资源。 人工智能技术先驱、麻省理工学院教授 J.C.R. Licklider 于 1960 年在他撰写的一篇名[详细]
-
2022,大模型还可以走多远
所属栏目:[大数据] 日期:2022-06-08 热度:104
2021 年是大模型层出不穷的一年。从去年 OpenAI GPT-3 发布开始,今年华为、谷歌、智源、快手、阿里、英伟达等厂商先后推出自己的大模型,人工智能产业开始了新一轮的激烈角逐,而且有愈演愈烈之势。作为探索通用人工智能的路径之一,AI 大模型不仅本身是一[详细]
-
2022年,AI将给网络安全行业带来什么?
所属栏目:[大数据] 日期:2022-06-08 热度:120
近年来,人工智能(AI)已经成为了我们日常生活中重要的组成部分。各种算法通过执行一系列与市场决策相关的任务,以发现在基本技术实现之外的、与人类习惯有关的洞察。在YouTube和TikTok上使用的建议算法,会根据您的反馈,提供个性化的内容。而虚拟地图之类的[详细]
-
2022年企业必须关注的几个大数据应用战略
所属栏目:[大数据] 日期:2022-05-24 热度:185
大数据是一个通用术语,指的是结构化和非结构化数据集合,它们对于典型的数据处理工具和系统来说过于庞大和复杂,因此难以处理。预测分析、用户行为分析以及其他从大数据中提取价值的高级数据分析方法,通常由大数据解决方案提供支持,并且很少局限于特定数[详细]
-
您是不是在楼宇安全中使用大数据?
所属栏目:[大数据] 日期:2022-05-24 热度:126
谈到大数据,物理安全有点姗姗来迟。企业已将各种数据源用于多种目的,例如向消费者进行营销(如谷歌、亚马逊和 Facebook)、提高运输效率(如包裹跟踪、航班调度和自动驾驶汽车),以及改善医疗保健服务(如、病历管理、人工智能辅助药物开发和患者健康风险评分)[详细]
-
2022年企业需要关注的12项数据和分析趋向
所属栏目:[大数据] 日期:2022-05-24 热度:128
数据和分析领导者需要在自适应人工智能(AI)系统、数据共享和数据编织等趋势的基础上推动新增长、韧性和创新。 趋势一:自适应AI系统(Adaptive AI systems) 同时,构建和管理自适应AI系统需要采用AI工程实践。AI工程能够通过编排和优化应用来适应、抵御或吸收[详细]
-
Gartner公布2022年数据分析十二大趋势
所属栏目:[大数据] 日期:2022-05-24 热度:52
关于数据的几项事实是:如今国内数据利用率仍然很低,企业数据孤岛问题显著,但数据分享成为更加主流的趋势,数据外泄的风险性愈发低于分享赢得的价值...... 对于企业来说,四种趋势和数据息息相关,发挥数据的潜在价值将带来新机会。 AI工程化是Gartner在近[详细]
-
终于有人将数据 信息 知识讲明白了
所属栏目:[大数据] 日期:2022-05-24 热度:97
数据无处不在,只是它们没有实体。 过去,人们习惯把数字的组合称为数据。但在今天,这样的理解显然不够全面。那么是否可以把数字、字符、字母的集合称为数据?也不准确。 在今天大数据的语境中,数据是可以被记录和识别的一组有意义的符号,一般可通过原始[详细]
-
数据映射优秀实践 类型 办法和工具的简要指南
所属栏目:[大数据] 日期:2022-05-24 热度:123
在任何应用程序集成、数据迁移以及一般的数据管理计划中,数据映射都是最关键的步骤之一。甚至可以这么认为:集成项目的成功在很大程度上取决于源数据到目标数据的正确映射。 本文将探讨有关数据映射的优秀实践,包括类型、常用方法以及一些有用的数据映射工[详细]